Cramer-Rao Bound Analog of Bayes' Rule [Lecture Notes]

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture 6 slides: Efficient estimators and Rao-Cramer bound

Let X = (X1, ..., X ˆ n) be a random sample from distribution fθ. Let θ = δ(X) be an estimator of θ. Let T (X) be a su cient statistic for θ. As we have seen already, MSE provides one way to compare the quality of di erent estimators. In particular, estimators with smaller MSE are said to be more e cient. On the other hand, once we know T (X), we can discard X. How do these concepts relate to e...

متن کامل

Geometry of the Cramer-Rao bound

The Fisher information matrix determines how much information a measurement brings about the parameters that index the underlying probability distribution for the measurement. In this paper we assume that the parameters structure the mean value vector in a multivariate normal distribution. The Fisher matrix is. then a Gramian constructed from the sensitivity vectors that characterize the first-...

متن کامل

Cramer-Rao Lower Bound and Information Geometry

This article focuses on an important piece of work of the world renowned Indian statistician, Calyampudi Radhakrishna Rao. In 1945, C. R. Rao (25 years old then) published a pathbreaking paper [43], which had a profound impact on subsequent statistical research. Roughly speaking, Rao obtained a lower bound to the variance of an estimator. The importance of this work can be gauged, for instance,...

متن کامل

The Cramer-Rao Bound for Sparse Estimation

The goal of this paper is to characterize the best achievable performance for the problem of estimating an unknown parameter having a sparse representation. Specifically, we consider the setting in which a sparsely representable deterministic parameter vector is to be estimated from measurements corrupted by Gaussian noise, and derive a lower bound on the mean-squared error (MSE) achievable in ...

متن کامل

Accuracy of scatterometer-derived winds using the Cramer-Rao bound

A wind scatterometer makes measurements of the normalized radar-backscatter coefficient of the ocean surface. To retrieve the wind, a geophysical model function (GMF), which relates to the near-surface wind, is used. The wind vector can be estimated using maximum-likelihood techniques from several measurements made at different azimuth angles. The probability density of the measured is assumed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Signal Processing Magazine

سال: 2015

ISSN: 1053-5888

DOI: 10.1109/msp.2014.2365593